Intermolecular interaction in systems with energy-rich phosphates. II. Effect of the protons arising in aqueous hydrolysing ATP solutions, IR investigations.
نویسندگان
چکیده
IR spectra of 0.3 m aqueous solutions of Mgo.5K3_ nHw ATP were plotted. The dependence of the spectra on the hydrolysis was investigated for three different K/H ratios of the nonhydrolysed system. Changes to bands provide information as to the protons added to the phosphate groups and base residues as a function of the initial protonation and degree of hydrolysis. More and more proton addition to the — P 03__ groups is observed as the initial protonation increases and as the degree of hydrolysis rises. The same applies as far as the addition of protons to the base residues is concerned to the systems with a higher initial protonation. At low degrees of hydrolysis the P 043' ions which occur do not bind the two hydrolysis protons completely. 150% protonated P 043” ions first form which cross-like via 0H +--'0 hydrogen bonds, which only become more strongly protonated in the systems with a higher initial protonation at large degrees of hydrolysis. The 0 H +---0 bonds between the 150% protonated hydrogen phosphate ions as well as the NH+,--N hydrogen bonds between the base residues cause an IR continuum and are thus easily polarizable. An extremely large change to the hydrate structure within narrow hydrolysis ranges is indicated by changes to the bands of the water molecules. The biological relevance of these findings is briefly discussed in the conclusions. Intermolecular Interaction in Systems with Energy-Rich Phosphates, II
منابع مشابه
Intermolecular interaction in systems with energy-rich phosphates. I. Stepwise protonation of PO4 3 minus, ADP and ATP salts, IR investigations.
IR spectra of aqueous solutions of P 043-, ADP3-, ATP4-, Mg ADPand (MgADP~ + P 043_) (in two cases hydrated layers) were plotted. The parameter for the investigation was the mole percent of protons relative to the anions. The other cations were sodium or potassium. The purpose of our work was to obtain a basis for understanding the results regarding the changes to the interactions in ATP system...
متن کاملA comparative study of Cu(П) and Pb(П) adsorption by Iranian bentonite (Birjand area) in aqueous solutions
Heavy metals such as Cu(II) and Pb(II) are among the hazardous pollutants that lead to severe ecological problems and have a toxic effect on living organisms. The removal of Cu(II) and Pb(II) by Iranian bentonite experiment were conducted in single component and multi component systems. The bentonite from the Birjand area was characterized by X-ray diffraction pattern and FTIR spectroscopy. The...
متن کاملBifurcation and Chaos in Size-Dependent NEMS Considering Surface Energy Effect and Intermolecular Interactions
The impetus of this study is to investigate the chaotic behavior of a size-dependent nano-beam with double-sided electrostatic actuation, incorporating surface energy effect and intermolecular interactions. The geometrically nonlinear beam model is based on Euler-Bernoulli beam assumption. The influence of the small-scale and the surface energy effect are modeled by implementing the consistent ...
متن کاملAdsorption Behavior of Cu(II) in Aqueous Solutions by SQD-85 Resin
The adsorption and desorption properties of SQD-85 resin for Cu(II) had been investigated. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e. initial pH, contact time and temperature. The results show that the optimal pH for the adsorption was 5.99 in the HAc-NaAc system, and the maximum adsorption capacity was estimated to 324 mg/g a...
متن کاملA computational chemistry investigation of the intermolecular interaction between ozone and isothiocyanic acid (HNCS)
The binding energy and geometrical structure of all the possible dimeric systems of isothiocyanic acid (HNCS) with ozone have been investigated in the gas phase, theoretically. Six minima located on the singlet potential energy surface of the HNCS–ozone system at the MP2 level with binding energies (corrected with ZPE and BSSE) in the range 492.29–531.40 kcal/mol. All intermolecular interaction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Zeitschrift fur Naturforschung. Section C, Biosciences
دوره 29 1 شماره
صفحات -
تاریخ انتشار 1974